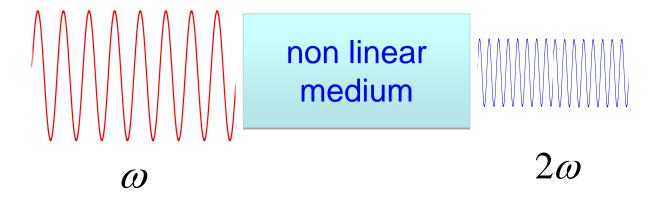
QUANTUM FREQUENCY COMBS

Claude Fabre

University Pierre et Marie Curie, Ecole Normale Supérieure Paris, France

Non linear optics deals essentially with classical light

Second Harmonic Generation

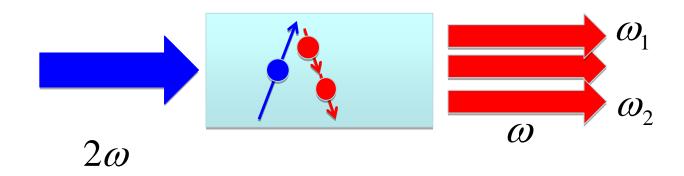


Non linear optics deals essentially with classical light

Parametric Down Conversion

Parametric fluorescence cannot be described by classical Maxwell equations : wave in —> no wave out!

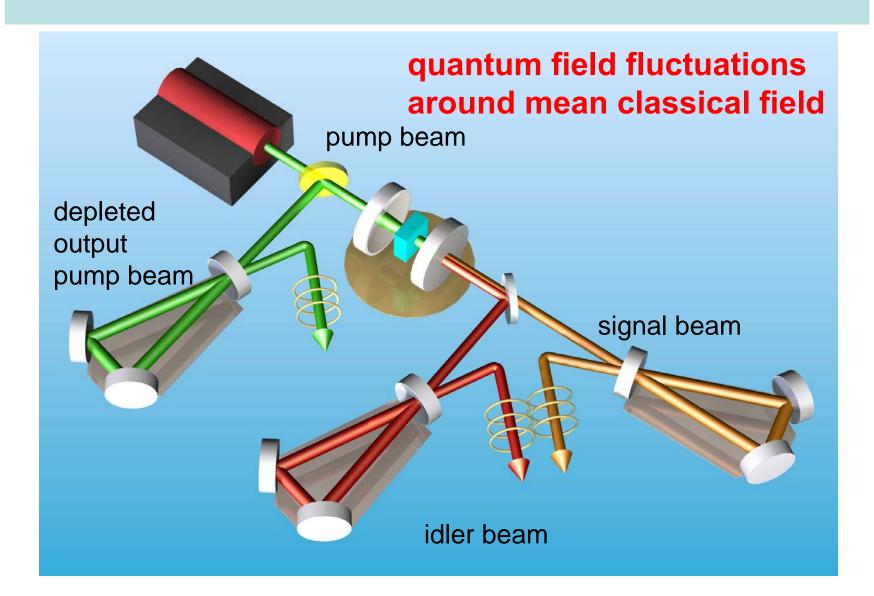
Parametric Down Conversion: a paradigm for quantum optics



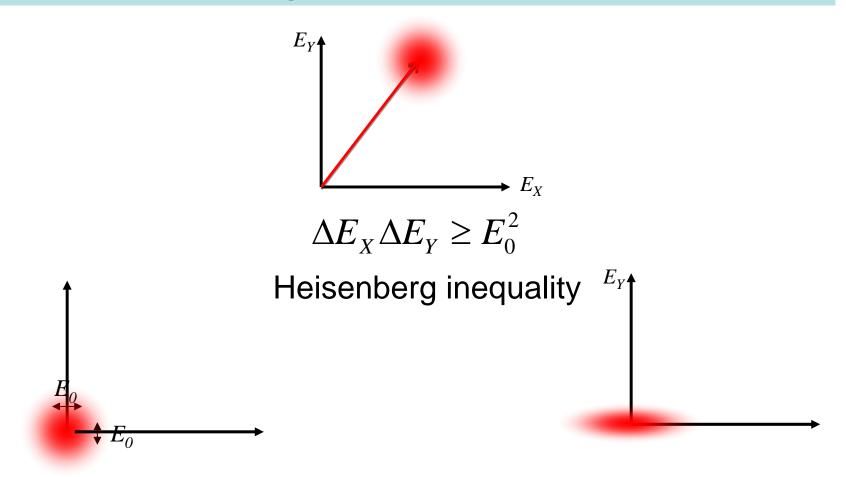
generation of **twin photons**at the heart of almost all quantum effects
L. Mandel experiments: Friberg et al PRL **54**, 2011(1985)

in the non degenerate case, it can produce entangled signal and idler photons

Parametric Down Conversion in a cavity: Properties of quantum fluctuations of the OPO:



Squeezing of quantum fluctuations



vacuum

$$\Delta E_{X} = E_{0}$$
 $\Delta E_{Y} = E_{0}$

squeezed vacuum

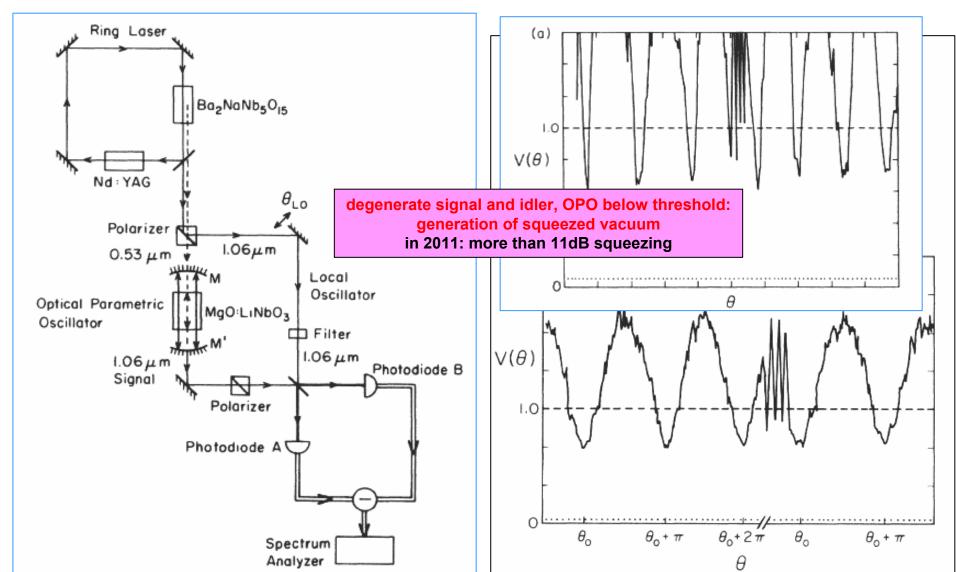
$$\Delta E_X \le E_0 \quad \Delta E_Y \ge E_0$$

Generation of Squeezed States by Parametric Down Conversion

Ling-An Wu, H. J. Kimble, J. L. Hall, (a) and Huifa Wu

Department of Physics, University of Texas at Austin, Austin, Texas 78712

(Received 11 September 1986)



Observation of Quantum Noise Reduction on Twin Laser Beams

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, and C. Fabre

Laboratoire de Spectroscopie Hertzienne de l'Ecole Normale Supérieure, Université Pierre et Marie Curie,

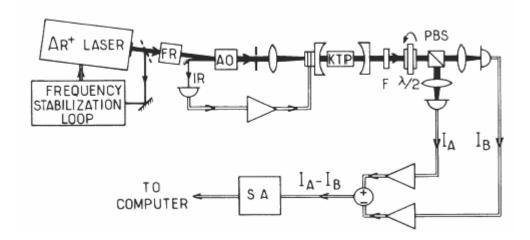
75252 Paris Cedex 05, France

and

G. Camy

Laboratoire de Physique des Lasers, Université de Paris Nord, 93430 Villetaneuse, France (Received 3 August 1987)

non degenerate signal and idler, above threshold: generation of "twin beams" in 2011: 9.9dB of intensity correlations

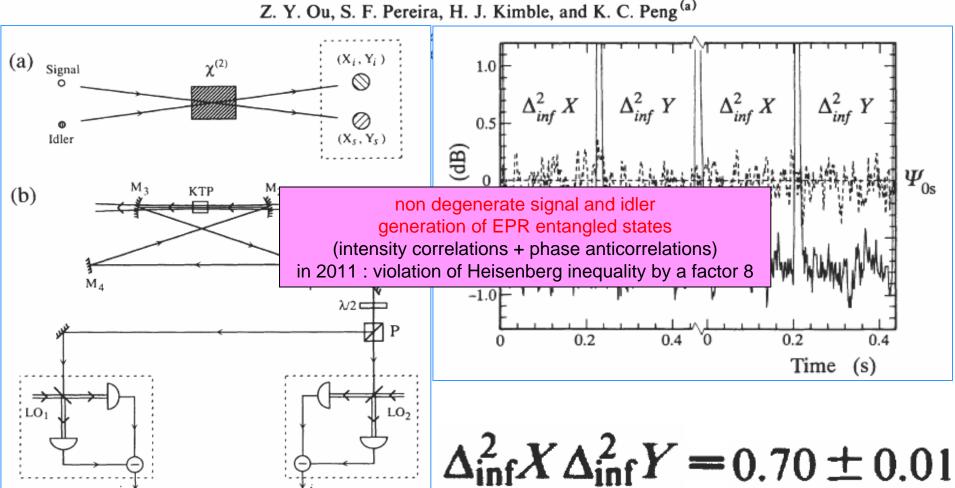


 $\Psi_{\iota}(\Omega, \theta,)$

 $\Phi(\Omega, \theta_1, \theta_2)$

 $\Psi_2(\Omega, \theta_2)$

Realization of the Einstein-Podolsky-Rosen Paradox for Continuous Variables



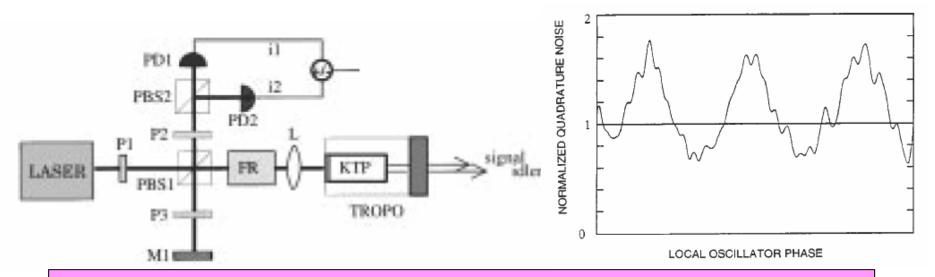
Observation of squeezing using cascaded nonlinearity

K. Kasai(*), Gao Jiangrui(**) and C. Fabre

Laboratoire Kastler Brossel (***) UPMC - Case 74 75252 Paris Cedex 05, France

(received 20 January 1997; accepted in final form 2 September 1997)

Abstract. – We have observed that the pump beam reflected by a triply resonant optical parametric oscillator, after a cascaded second-order nonlinear interaction in the crystal, is significantly squeezed. The maximum measured squeezing in our device is 30% (output beam squeezing inferred: 48%). The direction of the noise ellipse depends on the cavity detuning and can be adjusted from intensity squeezing to phase squeezing.



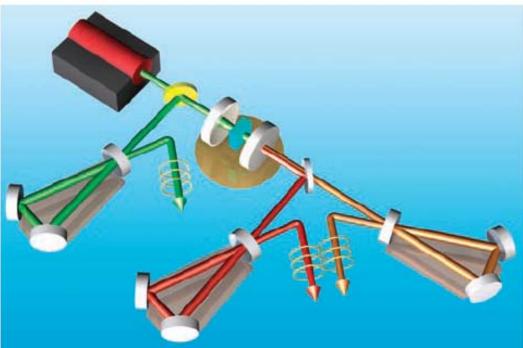
Quantum noise reduction effect also on the depleted pump beam going out of the OPO cavity

Three-Color Entanglement

A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, A. Martinel

Entanglement is an essential quantum resource for the acceleration of inform well as for sophisticated quantum communication protocols. Quantum inform expected to convey information from one place to another by using entangle demonstrated the generation of entanglement among three bright beams of wavelengths (532.251, 1062.102, and 1066.915 nanometers). We also obser for finite channel losses, the continuous variable counterpart to entanglemen

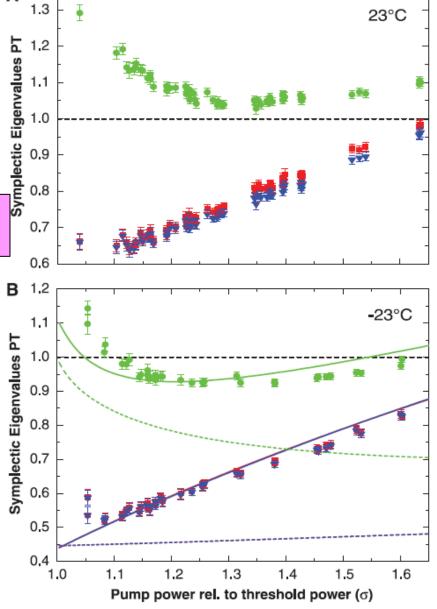
observation of three partite entanglement between signal, idler and output pump fields



Three-Color Entanglement

A. S. Coelho, *et al.* Science **326**, 823 (2009);

DOI: 10.1126/science.1178683



Quantum optics needs highly multimode quantum states

so far quantum noise reduction and entanglement observed between **single mode fields** (single frequency, TEM₀₀)

$$|\psi\rangle = \Box c_{1,2,...} |qubit_1\rangle \Box |qubit_1\rangle \Box ...$$

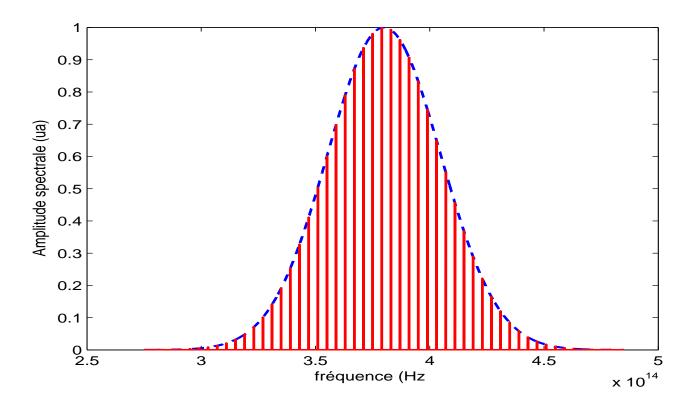
to generate multi-partite entanglement needed in quantum computing

$$\psi\rangle = \Box c_{n_1,n_2,...} | n_1 \text{ photons} in mode 1 \rangle \Box | n_2 \text{ photons} s in mode 2 \rangle \Box ...$$

Two degrees of freedom:

- the choice of the quantum state
- the choice of the mode basis

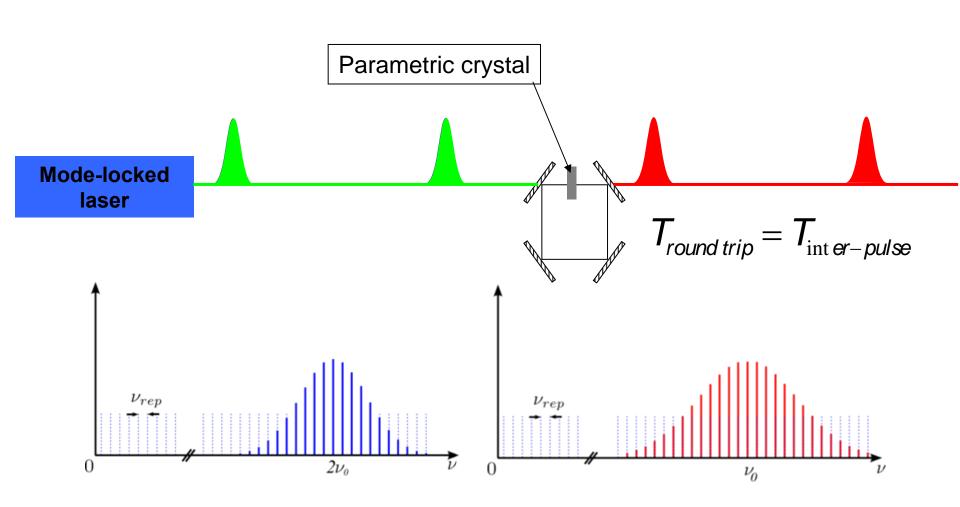
frequency combs: highly multimode objects



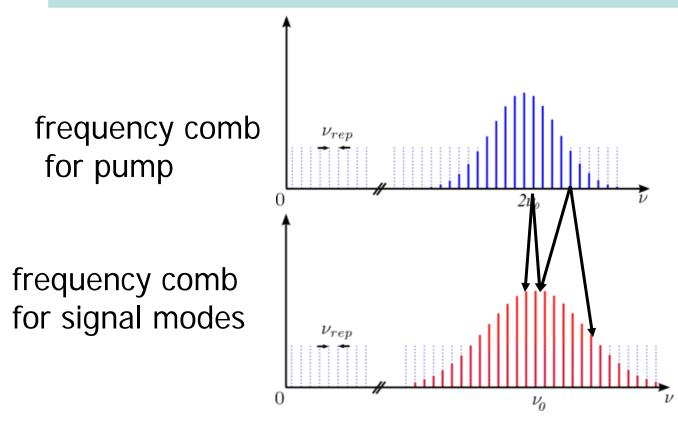
trains of 100fs pulses: 10⁴ 10⁵ frequency modes

Quantum properties of frequency combs generated by parametric down conversion

A Quantum Frequency Comb generator: Intracavity parametric down conversion Synchronously Pumped Optical Parametric Oscillator (SPOPO)

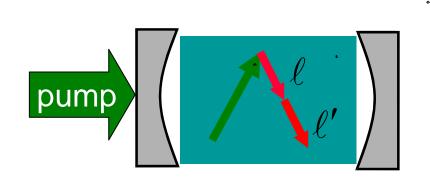


Parametric down conversion with multimode pump



« twin » photons may have many different fathers!

Quantum description of multi-pump-mode parametric interaction



G. de Valcarcel et al. PRA **74** 061801 (2006)

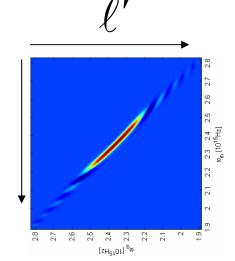
G. Patera et al. EPJD **56** 123 (2010)

$$\hat{H} = \sum_{\ell,\ell'} \chi \left(\omega_{\ell}, \omega_{\ell'}\right) \; lpha_{\mathit{pump}} \left(\omega_{\ell} + \omega_{\ell'}\right) \left(\hat{a}_{\ell}^{+} \hat{a}_{\ell'}^{+} + \hat{a}_{\ell} \hat{a}_{\ell'}\right)$$

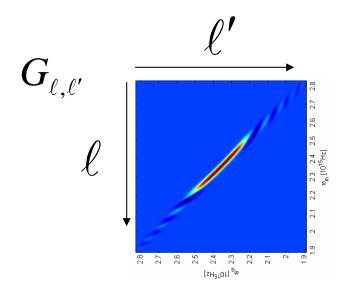
Crystal phase matching coefficient

pump spectral amplitude

$$\hat{H} = \sum_{\ell,\ell'} G_{\ell,\ell'} ig(\hat{a}_\ell^+ \hat{a}_{\ell'}^+ + \hat{a}_\ell \hat{a}_{\ell'} ig)$$
 ℓ
Symmetrical matrix $G_{\ell,\ell'}$



Diagonalization of the parametric interaction

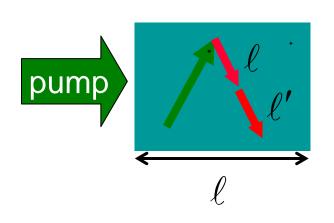


Eigenstates: « supermodes »

$$\hat{b}_k = \sum_{\ell} U_k^{\ell} \hat{a}_{\ell}$$

Eigenvalues: Λ_k $(|\Lambda_1| \Box |\Lambda_2| \Box \Box |\Lambda_k|)$

State generated by single pass through the crystal



$$\hat{H} = \hbar \prod_{k=1}^{N_m} \Lambda_k \left(\hat{b}_k^2 + \hat{b}_k^{+2} \right)$$

$$|\Psi_{out}\rangle = \prod_{k=1}^{N_m} e^{-i\ell\Lambda_k \left(\hat{b}_k^2 + b_k^{+2} \right)/c} |0\rangle$$
squeezing transformation

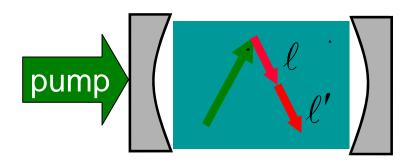
$$\left|\Psi_{\text{out}}\right\rangle = \left|\text{Squeezed state}_{k}(\Lambda_{1})\right\rangle \square ... \square \left|\text{Squeezed state}_{k}(\Lambda_{N_{m}})\right\rangle \square \left|0\right\rangle \square ...$$

Squeezing factors: $\exp(\pm \Lambda_k \ell / c)$

System generates N_m squeezed states

 N_m Number of non-zero eigenvalues of G (rank of the matrix)

Intracavity multimode parametric interaction:



At pump power P_{th} the system has an oscillation threshold

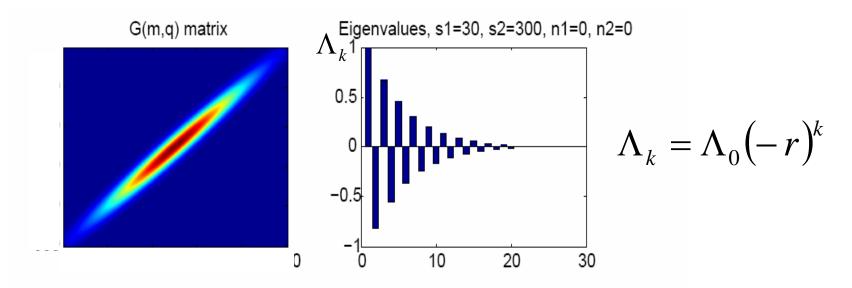
Just below threshold, mode 1 is perfectly squeezed

Other modes have squeezing factor:

$$S_{k} = \begin{bmatrix} |\Lambda_{1}| - |\Lambda_{k}| \\ |\Lambda_{1}| + |\Lambda_{k}| \end{bmatrix}$$

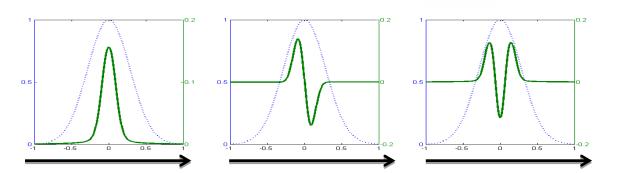
Eigenvalues and eigenmodes

Simple example: Gaussian variation of $G_{\ell,\ell'}$



 Λ_k eigenvalues: 30 non negligible, 99 970 almost zero

Eigenmodes: trains of Hermite-Gauss pulses



frequency

time

From a highly multimode situation (100,000 frequency modes)

it is in general possible to extract a smaller Hilbert space (1 – 100) in which the quantum effects are concentrated and maximized (entanglement and/or squeezing)

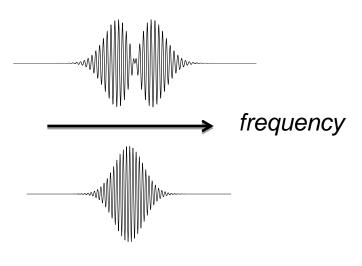
what about entanglement?

Starting from two squeezed supermodes

$$V_1(t)$$
 $V_2(t)$

$$V_{\pm}(t) = \frac{1}{\sqrt{2}} (V_1(t) \pm V_2(t))$$

are EPR entangled whatever Λ_1 Λ_2

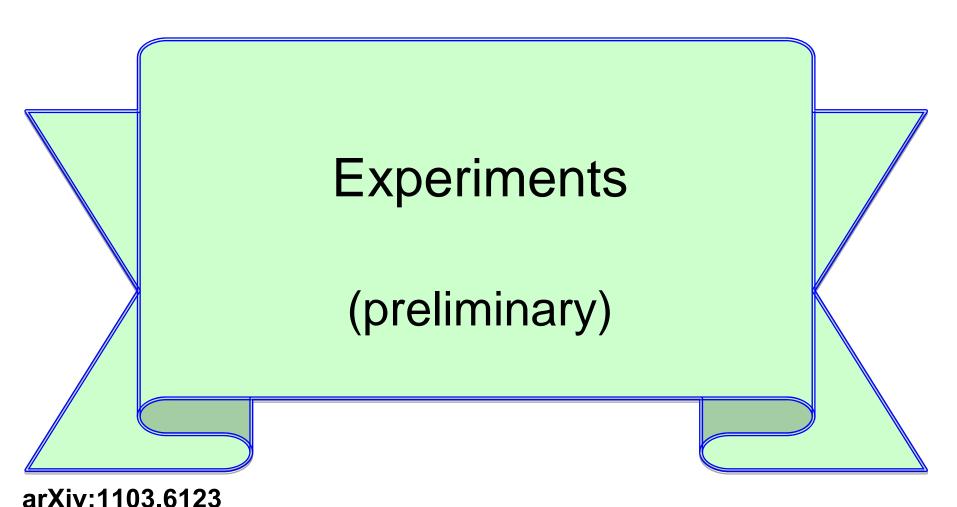


frequency

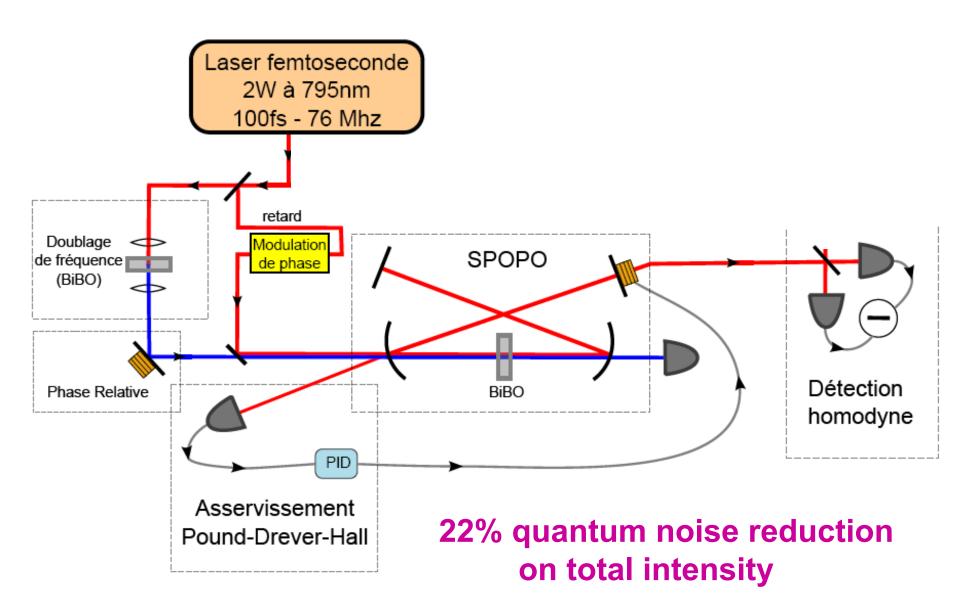
squeezed

entangled

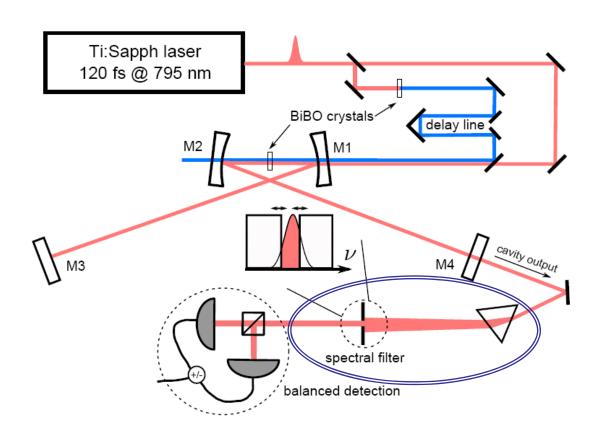
quantum correlations between different spectral parts of the comb



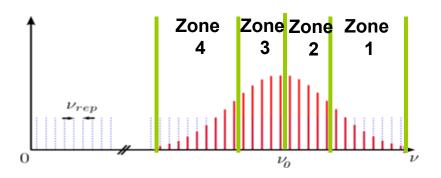
Generation and characterization of multimode quantum frequency combs
O. Pinel, Pu Jian, R. Medeiros, Jingxia Feng, B. Chalopin, C. Fabre, N. Treps



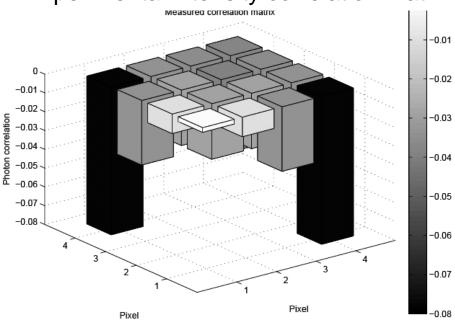
Evidence for multimode squeezing in SPOPO: spectral analysis of the generated light



Existence of quantum correlations between different frequency zones of the SPOPO

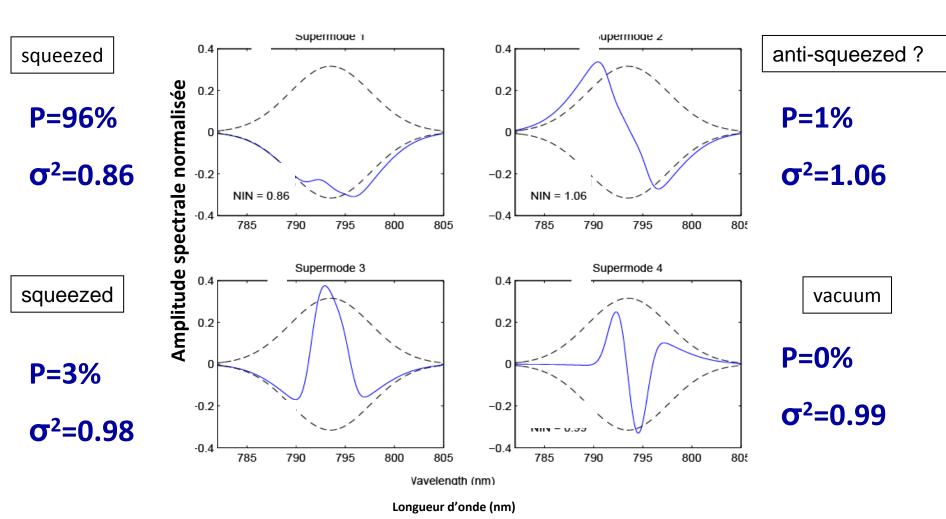


Experimental intensity correlation matrix



Eigenmodes of the correlation matrix:

Mode basis of uncorrelated states

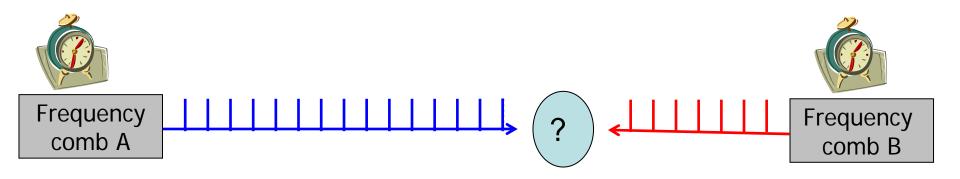


precise characterisation of the different non-classical modes of the quantum frequency comb

Application to Quantum Metrology of time

frequency combs: clocks

synchronization of remote clocks



- What is the best possible estimation of a time delay betwen the two clocks?
- How to make such a measurement?

general limit of sensitivity in parameter estimation

- optimized over all possible measurements
- optimized over all possible data processing strategies

Quantum Cramer Rao Bound

Helstrom, Phys Lett **A25**, 1012 (67) Braunstein, Caves Phys Rev Lett **72**, 3439 (94)

for Gaussian pulses in a coherent state:

$$(\Delta t)_{S-CRb} = \frac{1}{\sqrt{N}} \frac{1}{2\sqrt{\omega_0^2 + \Delta \omega^2}}$$

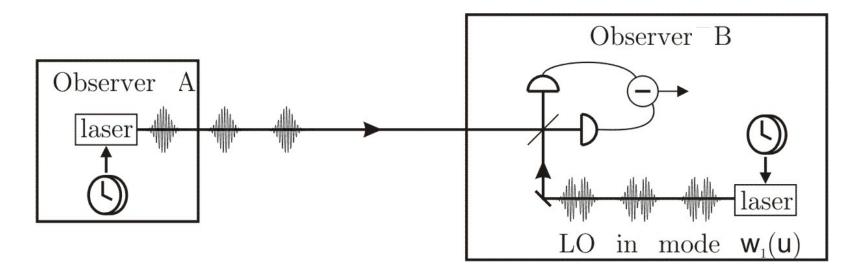
B. Lamine, C. Fabre, N. Treps, Phys. Rev. Letters **101** 123601 (2008) N: total number of photons

 ω_0 : mean frequency

 $\Delta\omega$: frequency spread

10mW, 20 fs :100-yoctosecond range

How to reach the Quantum Cramer Rao bound?



Frequency comb A: Gaussian "TEM₀₀"

Frequency comb B: Gaussian "TEM₁₀"

No other measurement technique, using the same state of light, can be more accurate

Can be improved below shot noise

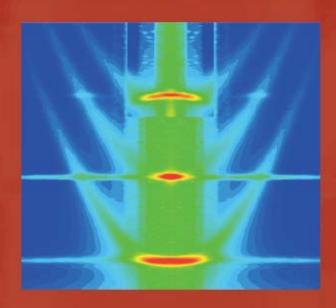
by using multimode non-classical state such as the one produced by a SPOPO

Conclusion

- Quantum Optics, more precisely quantum noise reduction and correlation effects are another important avatar of NonLinear Optics
- SPOPOs produce multimode non-classical states
- quantum states of light likely to optimize sensitivity of optical measurements especially metrology of time

Introduction to QUANTUM OPTICS

From the Semi-classical Approach to Quantized Light



Gilbert Grynberg, Alain Aspect and Claude Fabre

