

Early Developments in Laser Science and Nonlinear Optics

Orazio Svelto
Polytechnic School of Milano
National Academy of Lincei

Nonlinear Optics, East-West Reunion Suzdal, Russia, September 21, 2011

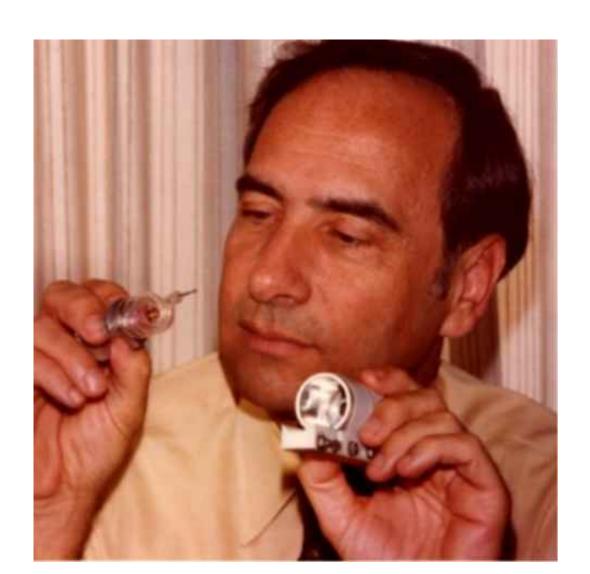
Introduction

Birth of Laser: On May 16, 1960, first laser action was achieved by Theodore H. Maiman (Ruby Laser)

Birth of Nonlinear Optics: June 28 1961 Peter Franken et. al. PRL paper on second harmonic generation

Spotty review of some initial achievements with a few anedocts and curiosities

The first Laser


May 16, 1960 The ruby laser by Theodore H. Maiman

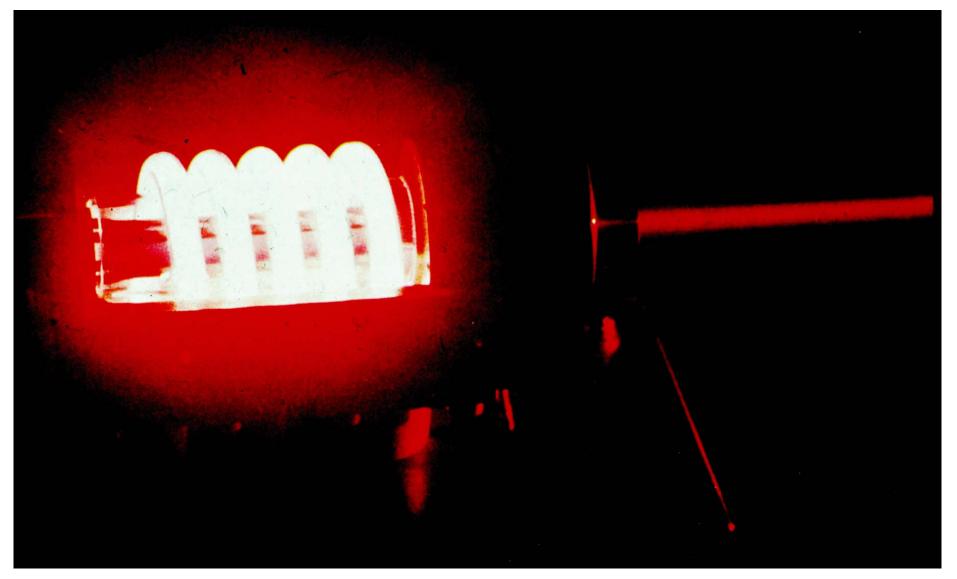
The scientific community was astounded: (a) The simplicity of the components used. (b) The characteristics of the energy levels of the laser transition. (c) The type of laser excitation (pulsed by a flashlamp)

Th.H. Maiman Holding the first Laser

The Fate of Maiman's Publications

- Physical Review Letters rejected his first account (Optical Maser Action in Ruby)
- A somewhat shorter account published by Nature (6 Aug. issue)
- During press release organized by Hughes in N.Y., more extensive paper, already accepted by JAP, stolen and published on a somewhat unknown British Journal
- T.H. Maiman, *Stimulated Optical Radiation in Ruby Masers*, Nature, **187**, 493 (1960)
- T.H. Maiman, *Optical Maser Action in Ruby*, Brit. Comm. and Electr. 674 (1960)

The Press Release


July 7, 1960 New York
Not the true first laser!
Immediately duplicated in
many labs (TRG, IBM,
Bell Labs)
Actually worked better
than the original one!

The Working-Horse for Laser Physics

Was it Really Laser Action?

- A few authoritative people doubted about Maiman's results Large beam divergence
 Large spectra bandwidth
 Absence of laser spiking
- Indeed, on May 16 1960, Maiman did observe laser action of a special kind
- Anyway Maiman is to be celebrated as the creator of the first laser

Charles H. Townes, *How the Laser Happened*, Oxford University Press (New York, 1999)

- D.F. Nelson, R.J. Collins and W. Kaiser, *Bell Labs and the Ruby Laser*, Phys. Today **63** 40 (2010)
- T. H. Maiman, *The Laser Odyssey*, Laser Press, Blaine, WA (2000)

A few Curiosities about Dye Lasers

First exciting example of widely tunable laser The working-horse for femtosecond laser research and nonlinear optics in the 1980s

First laser action independently achieved by:

P.P. Sorokin and J.R. Lankard, Stimulated Emission observed from an Organic Dye, Chloro-Aluminum Phtalocyanine IBM J. Res. Dev. **10**, 162 (1966)

F.P. Schäfer, W. Schmidt, J. Voltze *Organic Dye Laser Solution*Appl. Phys. Lett. **9**, 305 (1966)

Dye Lasers were just Great

- You could eat it
 The edible laser (Arthur L. Schawlow)
- You could drink it
 The drinkable laser (Eastman Kodak Labs Rochester)
- You could make life quite colorful

The Birth of Nonlinear Optics

Second-harmonic generation

P.A. Franken et al., *Generation of Optical Harmonics* Phys. Rev. Lett. **7**, 118 (1961)

◆The door to real-word applications

J.A. Giordmaine, *Mixing of Light Beams in Crystals* Phy. Rev. Lett. **8**, 19 (1962)

P.D. Maker et al., Effects of Dispersion and Focusing on the Production Of Optical Harmonics
Phy. Rev. Lett. **8**, 21 (1962)

The Peter Franken PRL Paper

VOLUME 7, NUMBER 4

PHYSICAL REVIEW LETTERS

August 15, 1961

GENERATION OF OPTICAL HARMONICS*

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich
The Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan
(Received July 21, 1961)

"...The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation."

Role of different authors

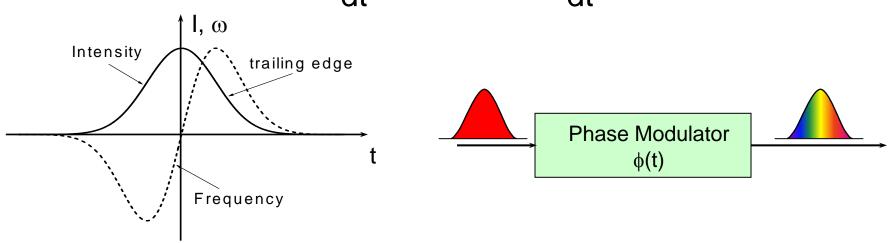
Stimulated Raman Scattering

Accidentally discovered by Woodbury and Ng
 (following demonstration of Q-switching by F.J. McClung and R.W.

(following demonstration of Q-switching by F.J. McClung and R.W. Hellwarth using a nitrobenzene filled Kerr cell)

E.J. Woodbury and W.K. Ng, *Ruby Laser Operation in the near IR*, Proc. IRE **50**, 2367 (1962)

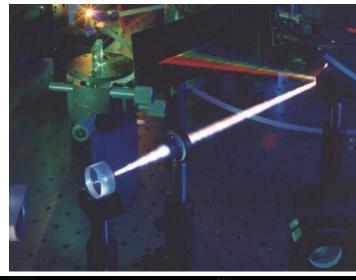
- Understood as SRS by Eckhardt et al.
- G. Eckhardt, R.W. Hellwarth *et al.*, *Stimulated Raman Scattering from Organic Liquids*, Phys. Rev. Letters **9**, 455 (1962)

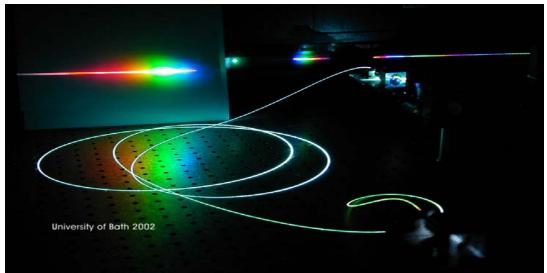

Self-Phase Modulation (SPM)

Optical Kerr effect: $n(\mathbf{r},t) = n_0 + n_2 I(\mathbf{r},t)$

$$\varphi(t) = \omega_0 t - k_0 n(t) \ell$$

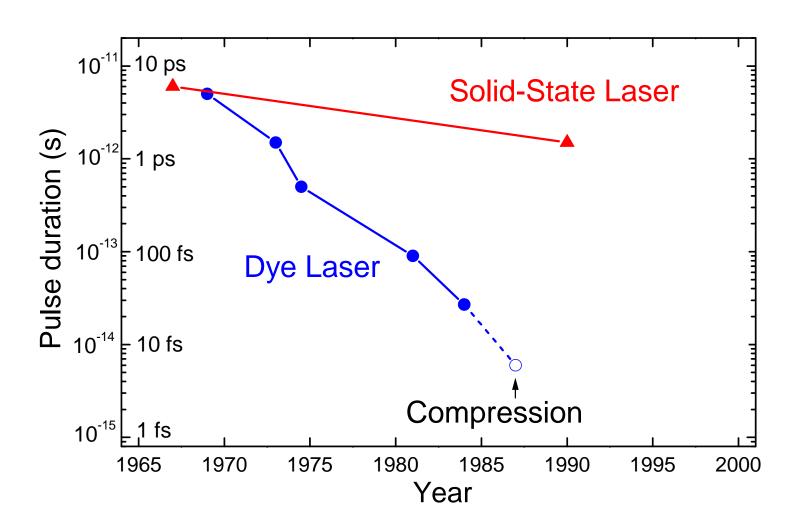
$$\omega(t) = \frac{d\phi}{dt} = \omega_0 - k_0 n_2 \frac{dI(t)}{dt} \ell$$




Spectral Broadening by SPM

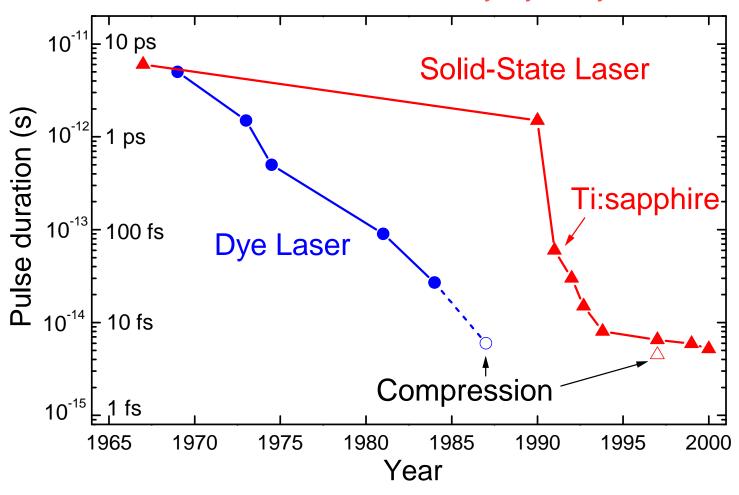
In a bulk piece of glass: non uniform SPM

In a photonic crystal fiber: uniform SPM

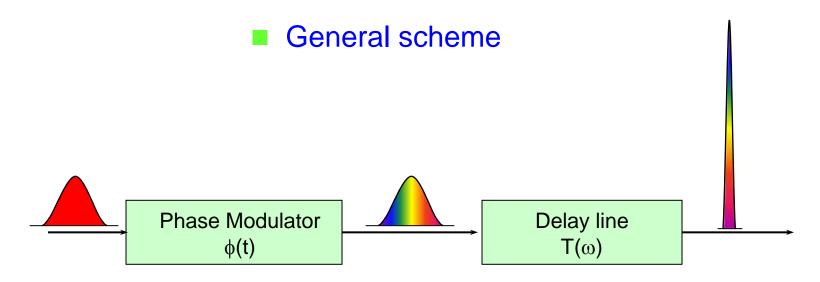

A Bridge between Laser Science And Nonlinear Optics: Ultrashort Laser Science

Historical Evolution of Pulse Duration (Phase 1)

From Picosecond to ~ 100 femtosecond



Historical Evolution of Pulse Duration (Phase 2)

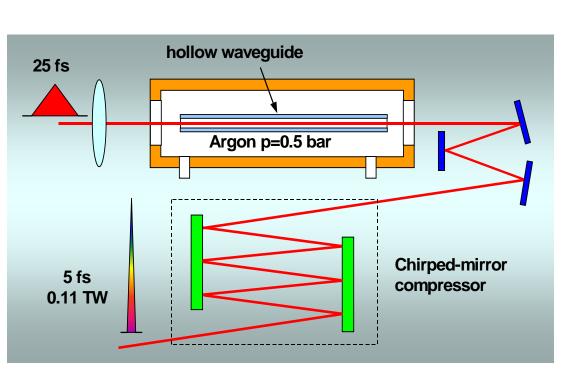

Tunable solid-state lasers from ~ 100 fs to a few fs, by-by to dyes

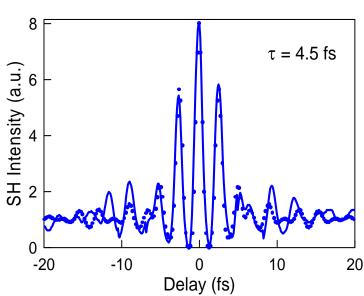
Compression of Light Pulses

Phase Modulator ⇒ Self Phase Modulation (SPM)

Uniform SPM ⇒ Use of a waveguiding structure

Delay line ⇒ grouping of all frequency components


R.A. Fisher, P.L. Kelley and T.K. Gustafson, *Subpicosend Pulse Generation Using Optical Kerr Effect*, Appl. Phys. Letters **14**, 140 (1969)

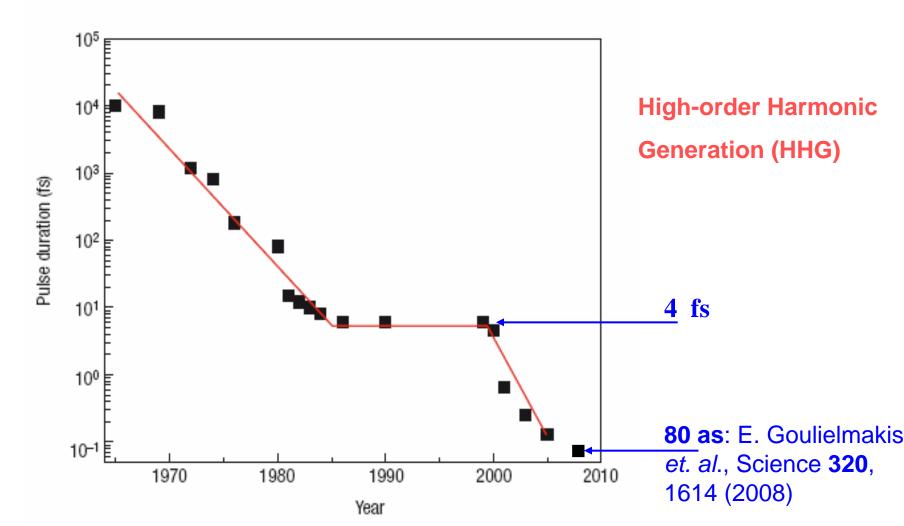


High-Energy Pulse Compression

Hollow-fiber Compressor (1-10 mJ)

Few-cycle laser pulses

M. Nisoli, S. DeSilvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)


M. Nisoli et al., Opt. Lett. 22, 522 (1997)

Historical Evolution of Pulse Duration (Phase 3)

From Femtoseconds to Attoseconds

A few tips about laser applications

A Very Frustrating Period (1960-1970)

Application-wise many initial attempts failed

- Medicine: retina photocoaugulation, port-wine stains, melanoma (pulsed ruby)
- Optical Communications (Ruby or He-Ne, hollow-fibers or periodic gas lenses; optical fibers 1000 dB/km)
- ◆ Material working (50 W/m, slow-axial-flow CO₂ laser)

A bright solution looking for a problem

A 2 kW CO₂ Laser

A Magic Turning Point

Year seventies

Medicine: retina photocoaugulation (Ar⁺ ion), port-wine stains (pulsed dye lasers), melanoma (forget about it) **Optical Communications**: DH semiconductor laser (Alferov, 1970), Optical Fibers (Kao, 1966, Corning 17 dB/km, 1970)

Material working: fast transverse flow (beginning of seventies) and fast longitudinal flow (late seventies) CO₂ laser

Conclusions

Laser, Early Days:

A Bright Solution Looking for a Problem

Laser and Nonlinear Optics (Fifty Years Afterwards):
 One of the most active fields during last century
 Going to play an even more important role in this century (the century of the photon)