Invited Talk International Conference 'Nonlinear Optics: East-West Reunion' (NLO50 2011)
Suzdal, Russia
Friday 23 September, 2011

Nonlinear Optics of Vacuum

Toshiki Tajima LMU and MPQ, Garching, Geri

Acknowledgments for Collaboration and advice: G. Mourou, F. Krausz, E. Goulielmakis, W. Leemans, K. Nakajima, K. Homma, D. Habs, P. Chomaz, H. Videau, T. Esirkepov, S. Bulanov, M. Kando, W. Sandner, A. Suzuki, M. Teshima, R. Assmann, R. Heuer, S. Karsch, F. Gruener, W. Chou, F. Takasaki, M. Nozaki, A. Chao, P. Bolton, J.P. Koutchouk, K. Ueda, Y. Kato, X. Q. Yan, R. Li, A. Ringwald, H. Ruhl, T. Ostermayr, S. Petrovic, C. Klier, B. Altschul, Y. K. Kim, M. Spiro, A. Seryi, A. Sergeev, A. Livak, K. Iqbal, C. Robilliard, J. Taran

- 1. Suzuki's challenge in high energy physics High energy frontier: TeV and beyond A collider?
- 2. Non-collider paradigm

Vacuum texture and synchrotron radiation in high energy

Energy frontier at PeV with attosceond metrology without luminosity

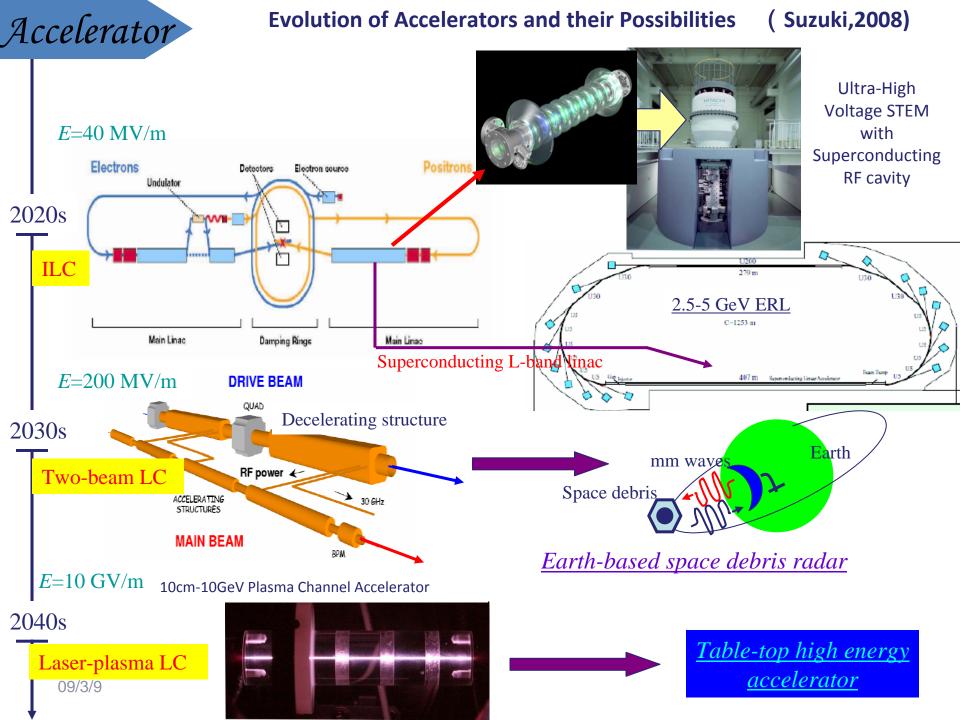
- 3. High Field explores low energy new fields:
 - high field of laser (cf. high momentum)
 - Dark matter and dark energy fields in vacuum 2nd harmonic, degenerate 4 wave mixing
- 4. zs streaking of vacuum by laser and γ photon
- 5. New initiative : IZEST = LIL compression, XCELS in Russia, etc.

2

IZEST's Mission: Responding to Suzuki's Challenge

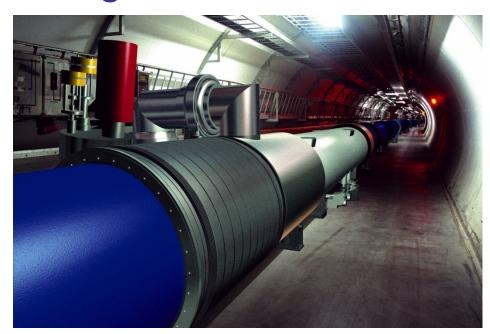
Atsuto Suzuki: KEK Director General, ICFA Chair

New Paradigm



Leptogenesis SUSY breaking

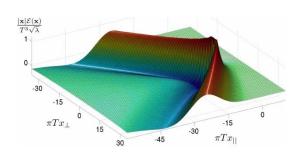
Extra dimension
Dark matter
Supersymmetry


Standard Model Quarks Leptons

20th Century, the Electron Century Basic Research Dominated by Massive and Charged Particles

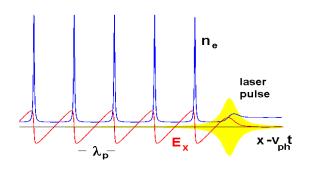
J. J. Thomson

21st Century; the Photon Century Could basic research be driven by the massless and chargeless particles; Photons?


C. Townes

Laser Wakefield (LWFA):

nonlinear optics in plasma



Kelvin wake

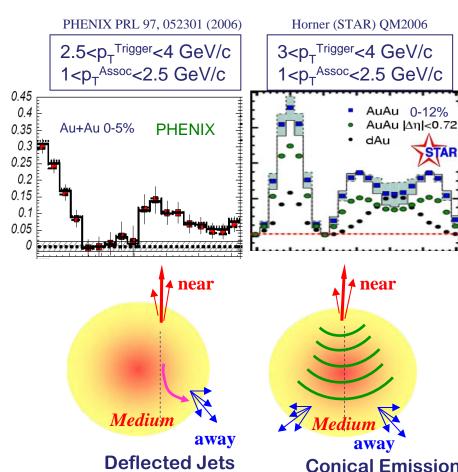
Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008)

No wave breaks and wake peaks at v≈c

← relativity regularizes

Wave **breaks** at v < c

(Plasma physics vs. String theory)



(The density cusps. Cusp singularity)

Nuclear Wake?

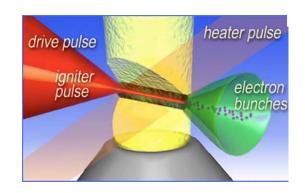
- BNL (and CERN) heavy ion collider: "monojet"
- Could be caused by:
 - Large angle gluon radiation (Vitev and Polsa and Salgado).
 - Deflected jets, due to flow (Armesto, Salgado and Wiedemann) and/or path length dependent energy loss (Chiu and Hwa).
 - Hydrodynamic conical flow from mach cone shock-waves (Stoecker, Casalderrey-Solanda, Shuryak and Teaney, Renk, Ruppert and Muller).
 - Cerenkov gluon radiation (Dremin, Koch).
- Jet quenching: <u>collective</u> <u>deceleration</u> by wakefield?
 - LWFA method, or Maldacena method?

ISMD

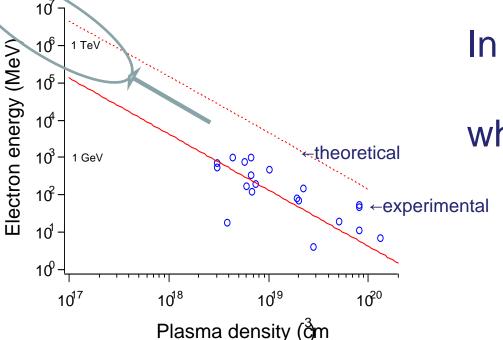
Density scalings of LWFA for collider

Accelerating field E_z	$\propto n_e^{1/2}$
Focusing constant K	$\propto n_e^{1/2}$
Stage length L_{stage}	$\propto n_e^{-3/2}$
Energy gain per stage W_{stage}	$\propto n_e^{-1}$
Number of stages N_{stage}	$\propto n_e$
Total linac length L_{total}	$\propto n_e^{-1/2}$
Number of particles per bunch N_b	$\propto n_e^{-1/2}$
Laser pulse duration τ_L	$\propto n_e^{-1/2}$
Laser peak power P_L	$\propto n_e^{-1}$
Laser energy per stage U_L	$\propto n_e^{-3/2}$
Radiation loss $\Delta \gamma$	$\propto n_e^{1/2}$
Radiative energy spread σ_{γ}/γ_f	$\propto n_e^{1/2}$
Initial normalized emittance ε_{n0}	$\propto n_e^{-1/2}$
Collision frequency f_c	$\propto n_e$
Beam power P_b	$\propto n_e^{1/2}$
Average laser power P_{avg}	$\propto n_e^{-1/2}$
Wall plug power P_{wall}	$\propto n_e^{1/2}$

PeV Accelerator



With conventional Technology
The accelerator would Girdle the Earth:
Fermi's vision (1954)



1km laser plasma accelerator with LIL or LMJ (Vision 2011)

Theory of wakefield toward extreme energy

$$\Delta E \approx 2 m_0 c^2 a_0^2 \gamma_{ph}^{-2} = 2 m_0 c^2 a_0^2 \left(\frac{n_{cr}}{n_e} \right), \text{ (when 1D theory applies)}$$

$$L_d = \frac{2}{\pi} \lambda_p a_0^2 \left(\frac{n_{cr}}{n_e} \right), \qquad L_p = \frac{1}{3\pi} \lambda_p a_0 \left(\frac{n_{cr}}{n_e} \right),$$

dephasing length

pump depletion length

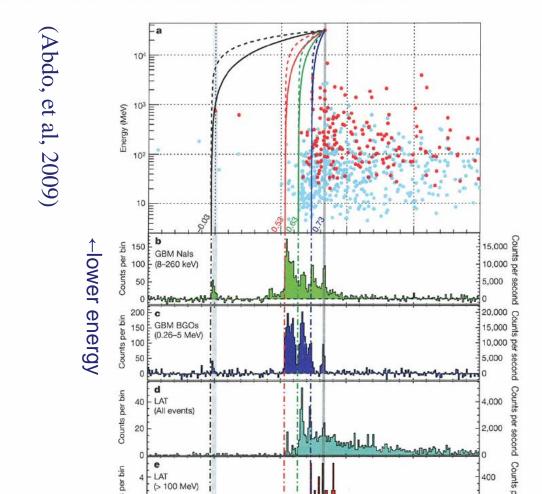
In order to avoid wavebreak,

$$a_0 < \gamma_{ph}^{1/2},$$

where

$$Y_{ph} = (n_{cr}/n_e)^{1/2}$$

Adopt:


LMJ laser (3MJ)

 $\rightarrow 0.7 \text{PeV}$

(with Kando, Teshima)

γ-ray signal from primordial GRB

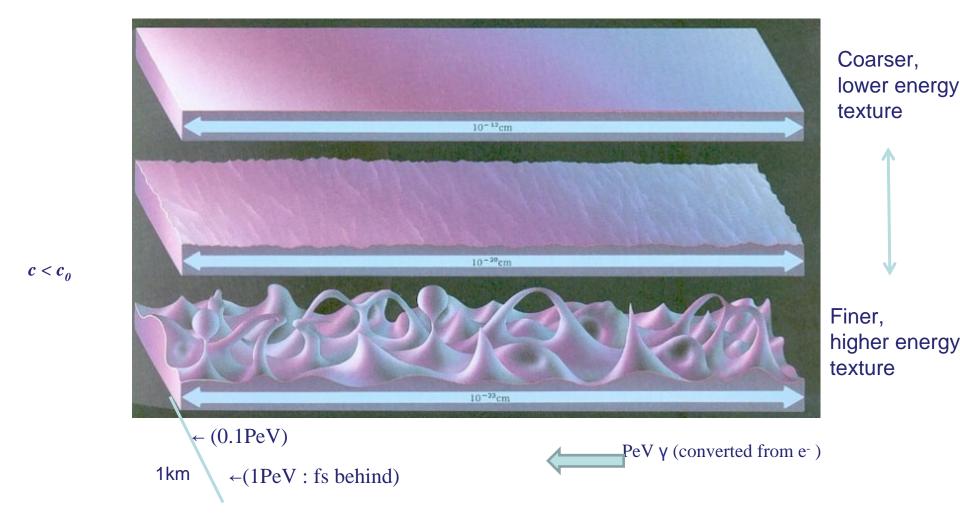
LETTERS NATURE

0.5

Time since GBM trigger (10 May 2009, 00:22:59.97 UT) (s)

Energy-dependent
photon speed ?
Observation of primordial
Gamma Ray Bursts (GRB)
(limit is pushed up
close to Planck mass)

Lab PeV γ (from e-) can explore this with control


-0.5

(> 1 GeV)

higher-

Feel vacuum texture: PeV energy γ

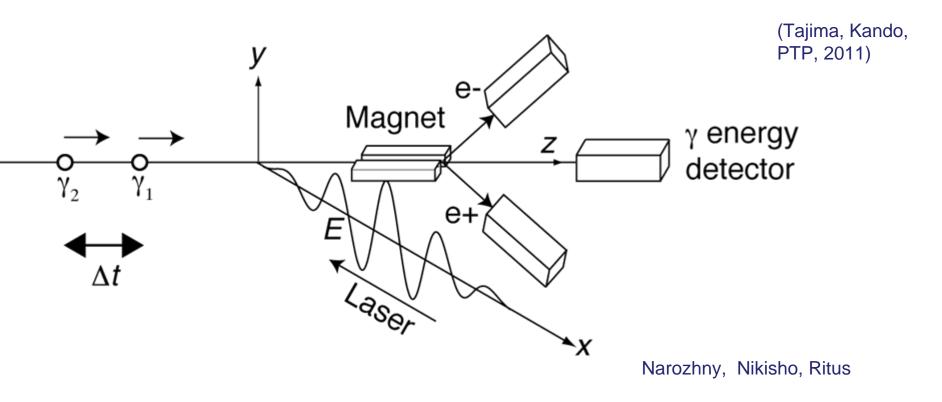
Laser acceleration \rightarrow controlled laboratory test to see quantum gravity texture on photon propagation (Special Theory of Relativity: c_0)

Extreme High Energy and Synchrotron Radiation E > 30TeV: untested territory for Lorentz invariance

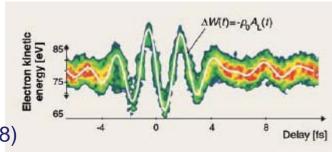
(B. Altschul, 2008)

with a modified Lorentz factor

$$\tilde{\gamma} = \frac{1}{\sqrt{1 + 2\delta_{\gamma}(\hat{v}) - v^2}}.$$
(13)


The power radiated would then be $P = \frac{e^2 a^2}{6\pi m^2} \tilde{\gamma}^4$.] For ultrarelativistic particles, $\gamma \approx [2(1-v)]^{-1/2}$ increases very rapidly as a function of v, since $\frac{d\gamma}{dv} = v\gamma^3 \approx \gamma^3$. The modified expression for $\vec{v}(\vec{p})$ changes the radiated power $P(\vec{p})$ to

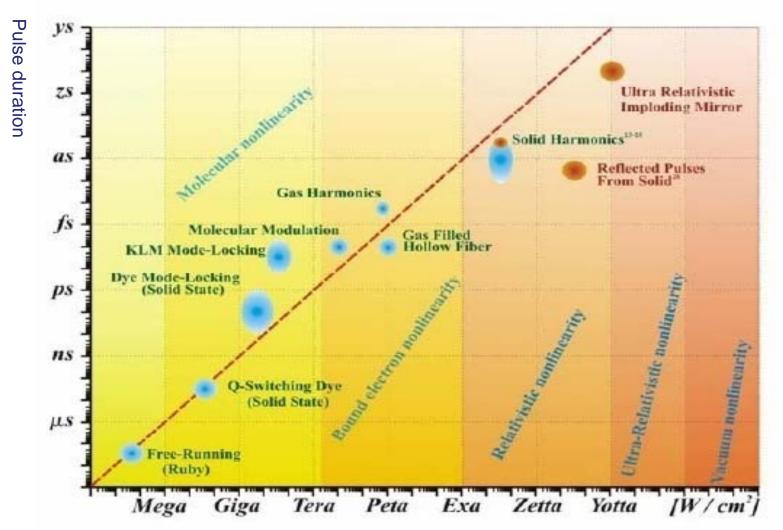
$$P(\vec{p}) = P_0(\vec{p})\{1 + 4\gamma^2[\delta(\hat{p}) - \delta_{\gamma}(\hat{p})]\}, \quad (14)$$


Synchrotron radiation radiation

↑ Lorentz violating term (>30TeV)

Attosecond Metrology of PeV y Arrivals

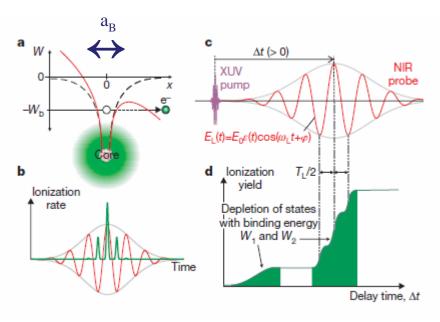
High energy γ- induced Schwinger breakdown (Narozhny, 1968) CEP phase sensitive electron-positron acceleration Attosecond electron streaking γ- energy tagging possible



Goulielmakis(2008)

The Conjecture

(← physics: "Matter is nonlinear"


"The <u>more rigid nonlinearity</u>, the more intense to manipulate it"; rigidity vs. pulse length)

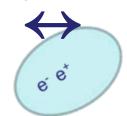
Streaking Vacuum

(from atomic physics to QED vacuum physics)

Uiberacker et al. (2007)

XUV photon ionization Laser streaking
→ attosecond dynamics

atom


vacuum

Gamma photon 'ionization' XUV streaking
→zeptosecond dynamics

$$E_S/E_K = \alpha^3$$
; $P_{c vac}/P_c = \alpha^6$

size

$$\lambda_C = \alpha a_B$$

depth of potential

$$\Phi = \alpha^2 W_B$$

$$R_{e^+e^-} \propto \exp\left(-\left(\frac{8}{3}\right)\left(\frac{m}{\omega}\right)\left(\frac{E_s}{E}\right)\right)$$

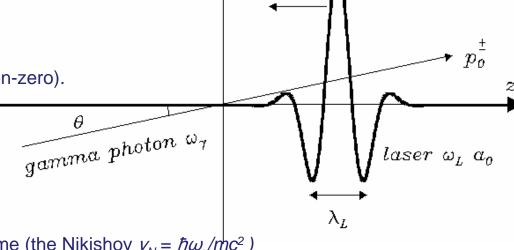
Nikishov(1964)

Nonperturbative:

$$W_{\perp} = \frac{3e^{2}n}{13k_{*}} \left(\frac{x}{2\pi}\right)^{k_{*}} e^{-4/\pi i}, \quad W_{\perp} = 2W_{\perp}, \quad x \ll 1. \quad (20)$$

For large values of s we essentially have $u \gg 1$ in the integrals (36). Using this fact, we

Multiphoton:

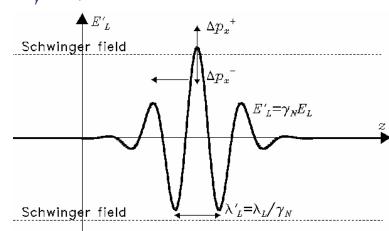

$$W_{11} = \frac{23\Gamma^{4}(50) e^{4} e^{4} e}{68\pi^{6} e} \left(\frac{2\pi}{2}\right)^{6}, \quad W_{\perp} = \frac{3}{2}W_{11}, \quad n \gg 1. \quad (36^{\circ})$$

γ-photon induced vacuum streaking by lasers

Schwinger-Nikishov amplitude

$$a_0^{SN} = (mc^2/\hbar\omega_L)(mc^2/\hbar\omega_V)$$

(We need to make the Schwinger invariant non-zero).

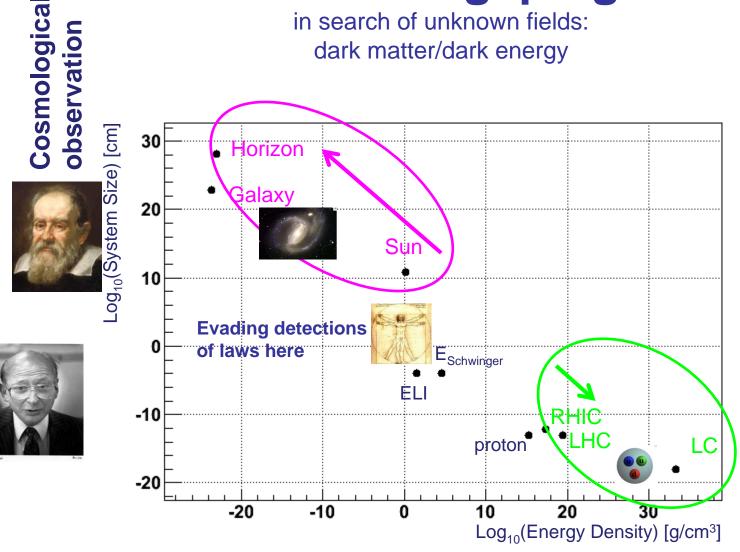


time resolution of streaking on the Nikishov frame (the Nikishov $\gamma_N = \hbar \omega / mc^2$)

$$\Delta t' = [2(\hbar/mc^2)/(a_0^2\omega_L^2)]^{1/3}.$$

Necessary laser amplitude:

$$a_0^{\text{res}} = 2 \ (mc^2/\hbar\omega_L).$$

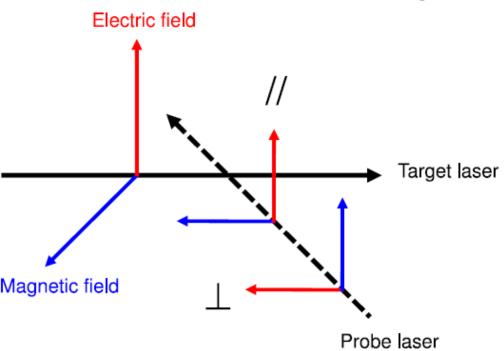


Laser fits the gaping hole

in search of unknown fields: dark matter/dark energy

High energy collider

Domains of physical laws

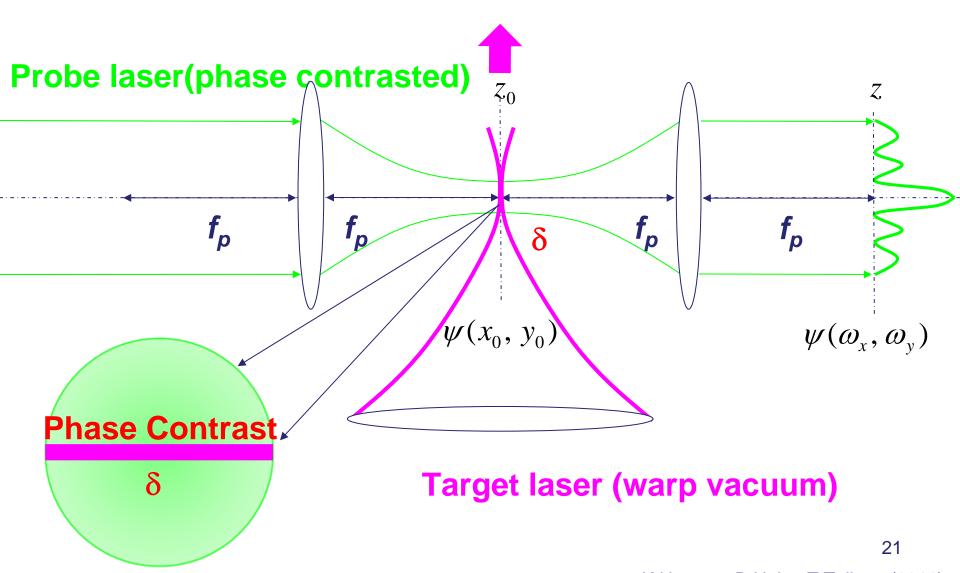


Birefringence by QED in eV range

Euler-Heisenberg one-loop Lagrangian

$$L_{QED} = \frac{1}{360} \frac{\alpha^2}{m^4} \left[4(F_{\mu\nu} F^{\mu\nu})^2 + 7(F_{\mu\nu} \widetilde{F}^{\mu\nu})^2 \right] \qquad \text{e-} \mathcal{O}(10^{-42} \text{b})$$

Refractive index depends on polarizations

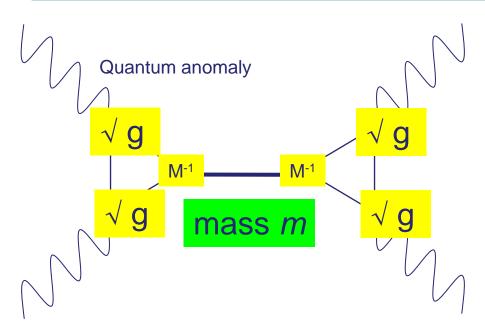


$$n_{\parallel} = 1 + \frac{16}{45} \frac{\alpha^2 U}{U_e}, \quad n_{\perp} = 1 + \frac{28}{45} \frac{\alpha^2 U}{U_e}$$

$$U_e = m_e^4 c^5 / \hbar^3 \approx 1.42 \times 10^6 \text{ J/µm}^3$$

ELI(~200J per ~20fs) can reach ∆n~10⁻⁹~10⁻¹⁰

Phase contrast imaging of vacuum


Beyond QED photon-photon interaction

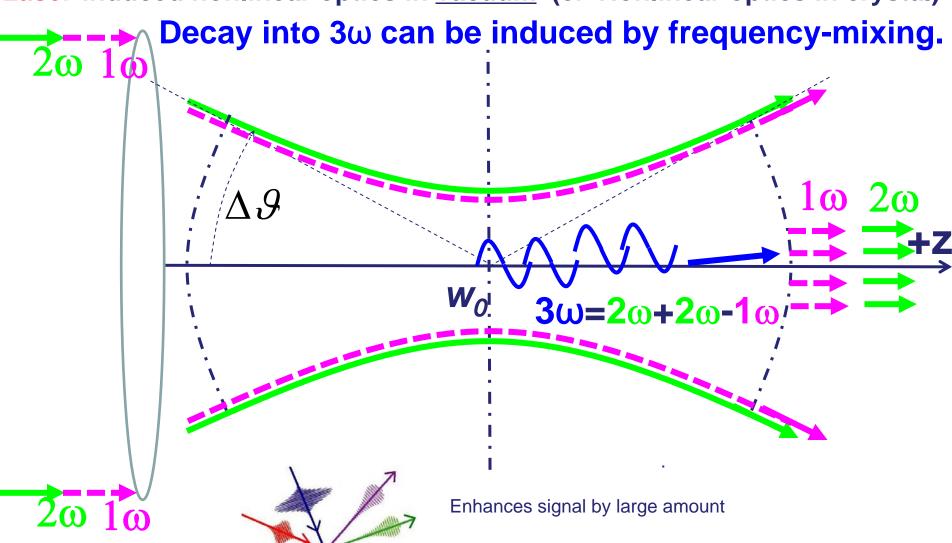
$$L_{QED} = \frac{1}{360} \frac{\alpha^{2}}{m^{4}} [4(F_{\mu\nu}F^{\mu\nu})^{2} + 7(F_{\mu\nu}\tilde{F}^{\mu\nu})^{2}]$$

$$\phi F_{\mu\nu}F^{\mu\nu} \qquad \sigma F_{\mu\nu}\tilde{F}^{\mu\nu}$$

Away from 4 : 7 = QCD , low-mass scalar ϕ , or pseudoscalar σ

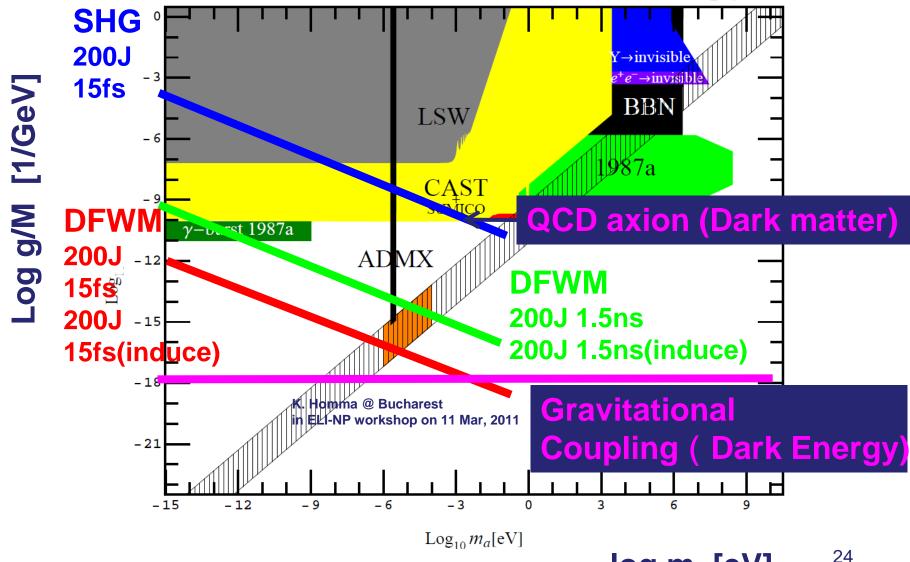
Resonance in quasi-parallel collisions in low cms energy

If M~M_{Planck}, Dark Energy


$$gM^{-1}F^{\mu\nu}F_{\mu
u}\phi$$
 arXiv:1006.1762 [gr-qc] Y. Fujii and K.Homma

QCD-instanton, Dark Matter

$$gM^{-1}F^{\mu\nu}\widetilde{F}_{\mu\nu}\sigma$$


Degenerate Four-Wave Mixing (DFWM)

Laser-induced nonlinear optics in vacuum (cf. Nonlinear optics in crystal)

K.Homma, D.Habs, T.Tajima

HFS road to unknown fields: dark matter and dark energy

Latest Development: CERN getting into the game

EuroNNAc Workshop on novel accelerators (May 3-6, 2011)

EuCARD, EuroNNAc Workshop, 3 - 6 May'11 / Programme

Tuesday 03 May 2011

Tuesday 03 May 2011

Introductory Presentations - Kjell Johnsen Auditorium (08:30-10:30)

- Conveners: Dr. Collier, Paul (CERN)

time title	presenter
08:30 Goals of Network and Workshop (00h15')	ASSMANN, Ralph (CERN)
08:45 Accelerator R & D as Driver of Innovation (00h45')	HEUER, Rolf (CERN)
09:30 History and Outlook for Plasma Acceleration (00h30')	TOSHI, Tajima (LMU Munich)
10:00 Modern Lasers for Novel Acceleration Methods (00h30')	MOUROU, Gerard (ILE)

Coffee Break - 30-7-012 (10:30-11:00)

Introductory Presentations - Kjell Johnsen Auditorium (11:00-12:30)

- Conveners: Dr. Collier, Paul (CERN)

time title		presenter
11:00 Acceler	rator R & D for Particle Physics (00h30')	MYERS, Steve (CERN)
11:30 Status I	Report Asia (00h30')	SHENG, Zhengming (Shanghai Jiao Tong University)
12:00 Status a	and Plans US (beam driven) (00h15')	HOGAN, Mark (SLAC)
12:15 Status a	and Plans US (Laser driven) (00h15')	ESAREY, Eric (LBNL)

ELI (2010), now Mega Project on Extreme Laser (2011)

Extreme Light Infrastructure: EU decided (2010) at Czech, Hungary, and Romania Now, Russia announced July 5, 2011: 6 Mega Projects (3-4B Euro) include Extreme Laser

Beyond Exawatt Beyond 10kJ

ELI: serving Chair, Scientific
Advisory Committee
Extreme Laser Mega Project
(in budget negotiation):
Chief Scientific Advisor/
Mega Grant Honorary Director
(suggested)
International team being formed:
IZEST (International Center for
Zetawatt / Exawatt Science and
Technology)

Евразийский открытый институт, используя обучение через интернет, реализует 18 программ ба... По диаметру отверст можно определить и веществ у ..

05.07.11

Σ Стерлигов Иван

Правительотвенная комносия по высоким технологиям и инновациям; Обсуждение

Обсуждение

Версия для печати

добавить ссылку

Сверхмощный лазер как интегратор науки

В числе меганаучных проектов, которые будут реализованы на территории России, — Международный центр исследований экстремальных световых полей на основе сверхмощного лазерного комплекса в Нижнем Новгороде. Руководит центром всемирно известный физик Жерар Муру при поддержке Минобрнауки России. STRF.ru подробно рассказывал об этой работе в статье «Российские учёные строят сверхмощный лазер». Насколько значим этот проект для мировой науки, мы выяснили у Тосики Тадзимы, заведующего кафедрой физического факультета Университета Людвига Максимилиана в Мюнхене, председателя Международного комитета по сверхмощным лазерам (International Committee on Ultra-High Intensity Lasers, ICUIL).

Тосики Тадзиме не терпится поучаствовать в российском мегапроекте по созданию сверхмощного лазера

Cnpabka STRF.ru:

Международный комитет по сверхмощным лазерам – подразделение Международного союза фундаментальной и прикладной физики, основанное в 2003 году. Задача ICUIL – продвижение науки и технологии сверхмощных лазеров и координация исследований и разработок в этой области. Под сверхмощными лазерами в комитете понимают лазеры с интенсивностью 10¹⁹ ватт на см² и мощностью около 10 тераватт

На Ваш взгляд, что примечательного произошло в области сверхмощных лазеров в последнее время?

 Прошлый год стал эпохальным для нас благодаря решению Евросоюза о запуске проекта Extreme Light Infrastructure [ELI, включает целый ряд сверхмощных лазеров в нескольких регионах Европы], а также началу реальной работы National Ignition Facility в США – альтернативный токамакам проект термоядерной энергетики, основанный на лазерном нагреве и инерционном удержании плазмы. Мы предполагаем, что развитие сверхмощных лазеров и сопутствующих областей науки значительно ускорится, и стараемся способствовать

Conclusions

- Optical approach: does it overtake the accelerator in high energy and fundamental physics?
- Collider physics requirements: ==→ <u>low density</u> operation, <u>laser</u> with large energy per stage
- Energy frontier (beyond TeV) with precision w/ a few shots possible = non-collider paradigm of fundamental science
 - e.g. Lorentz invariance test, quantum gravity
- High field science approach: capability to explore new fields (<u>dark matter</u>; <u>dark energy</u>): SHG, DFWM, learning from NLO (in matter); zs metrology
- Join us at IZEST; collaboration btw ISTC and IZEST

The Cabin in Suzdal (a Waka poem)

「遥か来ぬ ロシアの大地 夏残 照 芳しきかな 丸太

屋の宿」

"The distance I've come
far to the land of Russia
at summer's last cry
What fragrance and comfort
the logcabin lulls me in!"

Toshi Tajima Sept, 2011